ar X iv : m at h / 04 02 33 2 v 2 [ m at h . D G ] 2 3 M ar 2 00 5 CONTACT PROJECTIVE STRUCTURES
نویسنده
چکیده
A contact path geometry is a family of paths in a contact manifold each of which is everywhere tangent to the contact distribution and such that given a point and a one-dimensional subspace of the contact distribution at that point there is a unique path of the family passing through the given point and tangent to the given subspace. A contact projective structure is a contact path geometry the paths of which are among the geodesics of some affine connection. In the manner of T.Y. Thomas there is associated to each contact projective structure an ambient affine connection on a symplectic manifold with one-dimensional fibers over the contact manifold and using this the local equivalence problem for contact projective structures is solved by the construction of a canonical regular Cartan connection. This Cartan connection is normal if and only if an invariant contact torsion vanishes. Every contact projective structure determines canonical paths transverse to the contact structure which fill out the contact projective structure to give a full projective structure, and the vanishing of the contact torsion implies the contact projective ambient connection agrees with the Thomas ambient connection of the corresponding projective structure. An analogue of the classical Beltrami theorem is proved for pseudo-hermitian manifolds with transverse symmetry.
منابع مشابه
ar X iv : m at h / 05 04 08 2 v 4 [ m at h . D G ] 1 5 A pr 2 00 6 COMPLETE PROJECTIVE CONNECTIONS
The first examples of complete projective connections are uncovered: on surfaces, normal projective connections whose geodesics are all closed and embedded are complete. On manifolds of any dimension, normal projective connections induced from complete affine connections with slowly decaying positive Ricci curvature are complete.
متن کاملar X iv : m at h / 02 04 28 5 v 1 [ m at h . G T ] 2 3 A pr 2 00 2 FIBER SUMS OF GENUS 2 LEFSCHETZ FIBRATIONS
Using the recent results of Siebert and Tian about the holomorphicity of genus 2 Lefschetz fibrations with irreducible singular fibers, we show that any genus 2 Lefschetz fibration becomes holomorphic after fiber sum with a holomorphic fibration.
متن کاملar X iv : m at h / 04 02 33 0 v 4 [ m at h . Q A ] 2 A ug 2 00 5 ASSOCIATIVE CONFORMAL ALGEBRAS WITH FINITE FAITHFUL REPRESENTATION
We describe irreducible conformal subalgebras of CendN and build the structure theory of associative conformal algebras with finite faithful representation.
متن کاملar X iv : m at h / 02 06 04 1 v 3 [ m at h . FA ] 5 O ct 2 00 2 Abstract harmonic analysis , homological algebra , and operator spaces
harmonic analysis, homological algebra, and operator spaces
متن کامل